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Abstract. We discuss the odd-frequency pairing correlations discovered by Zachar, Kivelson
and Emery (ZKE) in a one-dimensional Kondo lattice. A specific lattice model that realizes
the continuum theory of ZKE is introduced and the correlations it gives rise to are identified
as odd-frequency singlet pairing. The excitation spectrum is found to contain a spin gap, and
a much lower energy band of spinless excitations. We discuss how the power-law correlations
realized in the ZKE model evolve into true long-range order when Kondo chains are weakly
coupled together and tentatively suggest a way in which the higher-dimensional model can be
treated using mean-field theory.

1. Introduction

The concept of odd-frequency pairing as a new symmetry class of superfluidity was
conceived twenty five years ago by Berezinskii [1]. It is well known that the development
of a paired state in a system with repulsive interactions is aided by the formation of a
pair wavefunction with nodes. Berezinskii’s idea extends this concept, proposing that
superfluidity can result from a pair wavefunction with a node intime.

In the years that have elapsed since Berezinskii’s original proposal, theoretical attempts
to develop Berezinskii’s radical concept have been thwarted by the absence of a weak-
coupling realization of the phenomenon. The Landau school of physics found early on
that there were no logarithmic singularities in the odd-frequency pairing susceptibility:
the absence of a weak-coupling Cooper instability meant that a controlled weak-coupling
treatment of the idea was not possible.

Five years ago, Balatsky and Abrahams [2] revived the idea of odd-frequency pairing,
suggesting that strong-coupling realizations of the phenomenon might be found. They
pointed out that both triplet and singlet realizations of odd-frequency pairing are allowed
by symmetry. Efforts to pursue this idea led to the following developments.

(i) Emery and Kivelson [3] observed that odd-frequency pairing can be regarded as
the condensation of a composite order parameter. For example, the scalar combination of a
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triplet pair with a spin operator gives rise to odd-frequency singlet pairing. The combination
of a singlet pair with a spin operator gives rise to odd-frequency triplet pairing.

(ii) Coleman, Miranda and Tsvelik [4] have combined these ideas with the technology
of Majorana fermions to develop a mean-field treatment of odd-frequency triplet pairing
within a Kondo-lattice model, suggesting odd-frequency triplet pairing as an alternative
scenario for heavy-fermion superconductivity. In this model, is was possible to show that
a staggered composite order parameter led to a finite Meissner stiffness.

(iii) Abrahams, Balatsky, Scalapino and Schrieffer [5] have pursued this idea using a
composite BCS-type Hamiltonian.

These efforts have all added plausibility to the Abrahams–Balatsky proposal, but the
continued absence of a controlled, solvable model has led to a cautious response from
the community.

Recent non-perturbative results due to Zachar, Kivelson and Emery [6] (ZKE) open up
an exciting new possibility. These authors have considered a variant of the one-dimensional
Kondo lattice, and by the application of bosonization techniques have shown that there are
strong odd-frequency pair correlations in this model. The ZKE results strongly suggest that a
higher-dimensional version of their model would develop long-range odd-frequency pairing.
In this paper we explore consequences of this non-perturbative solution. We introduce a
lattice model where the absence of back-scattering removes some uncertainties present in the
original work. The power-law correlations are identified as odd-frequency singlet pairing;
we discuss how they evolve into a state of true long-range order when Kondo chains are
weakly coupled together.

2. Kondo chains without back-scattering

The model suggested by ZKE for the realization of odd-frequency pairing is a one-
dimensional Kondo-lattice model. A critical and subtle point in their arguments was the
assumption that back-scattering off the local moments can be neglected. To begin our
discussion of their results, we shall introduce a lattice variant of their one-dimensional
model, where back-scattering is either absent, or strongly suppressed.

ε(k)

k

J

a−π/  π/a

t

Figure 1. Illustrating the one-dimensional chain which realizes a Kondo lattice without back-
scattering.

The one-dimensional model consists of a tight-binding chain of conduction electrons.
A localized moment is located between neighbouring sites, and couples to them via an
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antiferromagnetic Kondo exchange interaction (figure 1) as follows:

H = −t
∑
j

[ψ†
j+1ψj + HC] + J

∑
j

ψ
†
j σψj · [Sj+1/2 + Sj−1/2] (1)

whereψ†
j = (ψ

†
↑, ψ

†
↓) creates the spin-1/2 conduction electrons, andSj+1/2 is a spin-1/2

local moment located between sitesj andj + 1, as shown in figure 1.
We begin by linearizing the spectrum around the Fermi energy, representing the electron

on the lattice by a continuum of right- and left-moving electrons:

1√
a
ψjσ =

(
Rσ (xj )e

ikF xj + Lσ (xj )e
−ikF xj

)
(2)

to obtain

H = H0 + V

H0 = −ivF

∫
dx [R+

σ ∂xRσ − L+
σ ∂xLσ ] + (interaction) (3)

V = vF
∑
j

Sj ·
[
gf (JR + JL)+ gb(e

−2ikF xjnR + e2ikF xjnL)
]

(4)

where

gf = (J/t)

gb = (J/t) cos(kF a) (5)

are the dimensionless coupling constants for forward and back-scattering,a is the lattice
spacing and

JR = R+
σ σσ,σ ′Rσ ′ JL = L+

σ σσ,σ ′Lσ ′ (6)

define the currents of right- and left-moving electrons. The back-scattering term couples
the spins to the components of the staggered magnetization at momentum±2kF :

nR = R+
σ σσ,σ ′Lσ ′ nL = L+

σ σσ,σ ′Rσ ′ . (7)

In general this coupling cannot be neglected. However, if we take the special case of
half-filling, where kF a = π/2, the back-scattering coefficient is identically zero and our
discussion considerably simplifies. Note also that we have added an implicit electron–
electron interaction term toH0. Even though the original mode contains no explicit
interactions, interactions will be generated by the high-energy physics. We shall shortly
see how these implicit interaction effects can be included into the bosonized form of the
Hamiltonian.

We now focus our attention on the half-filled case. Let us begin by reviewing the
abelian bosonization procedure. The electron operators are written as

Rσ (x)

Lσ (x)

}
= 1√

2πa
e−i

√
4πφ±

σ (x). (8)

The right- and left-moving electron phasesφ±
σ = (1/

√
2)(φ±

c + σφ±
s ) can be written in

terms of canonically conjugate fields:

φ±
λ = 1

2
[2λ(x)∓8λ(x)] (λ = c, s)

2λ(x) =
∫ x

−∞
dx ′ 5λ(x

′)
(9)
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where

[8a(x),5b(x
′)] = iδ(x − x ′)δab. (10)

The low-energy physics of the interacting chain can then be modelled by the sum of two
Gaussian models for the charge and spin fields8c and8s :

H(0) = H(0)
c +H(0)

s

H (0)
c = vc

2

∫
dx

[
Kc5

2
c(x)+K−1

c [∇8c(x)]
2
]

H(0)
s = vs

2

∫
dx

[
52
s (x)+ [∇8s(x)]

2
]
.

(11)

Here, the charge and spin velocitiesvc,s are non-universal and determined by the electron
interactions in the chain. The spin stiffnessKs is fixed by the SU(2) spin-rotation symmetry:
Ks = 1. Kc, the charge stiffness, sets the charge susceptibility of the electron chain
χc = πKc/(2vc). Kc is dependent on the electron–electron interactions in the chain. If
these interactions are predominantly repulsive, we expectKc < 1.

The bosonized expressions for the spin currents are then

J
(+)
R = J xR + iJ yR = 1

2πa0
exp[i

√
2π(2s −8s)]

J
(+)
L = J xL + iJ yL = 1

2πa
exp[i

√
2π(2s +8s)]

J zR + J zL =
√

2

π
∇8s.

When back-scattering is absent, the charge degrees of freedom decouple. Using the
expressions for currents (12) we obtain the Hamiltonian for the spin dynamics:

Hspin = H(0)
s +Hint (12)

Hint = vs
∑
j

{
gz

√
2

π
Szj∇8(j)+ g⊥

2πa
cos[

√
2π8(j)](S+

j e−i
√

2π2(j) + HC)

}
(13)

where we the subscriptss andf on the phase variables and coupling constants have been
dropped for clarity. To examine the model in a solvable Toulouse limit, an easy-axis
anisotropy has been included into the couplings. This model withgz � g⊥ for a single
local spin was considered by Clarkeet al [7] and is equivalent to the two-channel Kondo
model.

Following Toulouse, Emery and Kivelson, we absorb the phase factor e−i
√

2π2(j) into
the spin operators via a unitary transformation, writing

τ
(±)
j = U †S(±)j U = S

(±)
j e∓i

√
2π2(j) (14)

where

U = exp

(
i
√

2π
∑
j

2(j)Szj

)
. (15)

Since [2(j),8(x)] = −iθ(xj − x), it follows that

U
√

2π8(x)U † =
√

2π8(x)+ 2π
∑
l

Szl θ(xl − x). (16)
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In other words, each spin to the right ofx changes the spin phase byπ . This means that the
electron acquires a phase ofδ = π/2 each time it scatters off a spin. This is the ‘resonant
scattering’ that we expect from the physics of the Kondo effect. It also follows that

1

2

∫
dx U [∇8]2U † = 1

2

∫
dx [∇8]2 −

√
2π

∑
j

∇8(xj ) Szj (17)

and so

H ∗ = UHU † = H(0)
s + vs

∑
j

{
(gz − π)

√
2

π
τzj ∇8(j)+ (−1)j

g⊥

πa
cos[

√
2π8(j)]τ xj

}
.

(18)

To characterize the low-energy physics of the ZKE model, it is convenient to examine the
strongly anisotropic ‘Toulouse limit’ wheregz = π , so

H ∗ = H(0)
s + vs

∑
j

g⊥

πa
(−1)j τ xj cos[

√
2π8s(j)]. (19)

Experience gained from the one- and two-channel Kondo models leads us to anticipate that
provided the local moments are screened, then the physics of the Toulouse limit will extend
out to the isotropic point.

3. The order parameter

In this section we discuss the correlations present in the ground state of the ZKE model at
the Toulouse point. This model is, in essence, a chain of two-channel Kondo impurities:
each localized spin is coupled to the right- and left-moving screening channels. In isolation,
a two-channel Kondo impurity retains an unquenched degree of freedom associated with the
ability of the Kondo singlet to fluctuate between the two screening channels. This residual
spinless degree of freedom behaves like a localized Majorana fermion. In the ZKE model,
these degrees of freedom become coupled, removing the residual entropy by generating a
low-lying band of spinless excitations.

At the Toulouse point, theτ xj commute with the Hamiltonian, becoming constants of

the motion with eigenvaluesτ xj = ± 1
2. In the ground state, the spin phase of the conduction

chain prefers to acquire a constant value. The(−1)j coupling term in the Hamiltonian will
mean that theτ xj develop staggered long-range order in the ground state:

〈τ xj 〉 = Z

2
(−1)j . (20)

The effective spin Hamiltonian for the ground state is then a sine–Gordon model:

H̃ = H(0)
s + M0

πa

∫
dx cos[

√
2π8s(x)] (21)

whereM0 = 3g⊥ is the ‘bare’ mass and3 = vs/a is the high-energy cut-off. The ‘
√

2π ’
prefactor in the cosine guarantees that the sine–Gordon Hamiltonian (21) possesses a full
SU(2) spin symmetry (see [8]). In other words, the formation of Kondo singlets completely
quenches the anisotropy of the Kondo coupling, restoring the full symmetry of the band.
From the Betheansatzsolution to the sine–Gordon model, it is known that the spectrum
of this model contains a low-lying triplet separated from the ground state by a gap1s and
a singlet with a gapM = √

31s [9]. The approximate size of the spin gap1s can be
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obtained from simple scaling arguments. Since the spin phase8s is a Gaussian variable,
we know that in the uncoupled chain, cos(

√
2π8) has power-law correlations

〈cos(
√

2π8(1)) cos(
√

2π8(2))〉 ∼ 1

(1x2 − v2
s 1t

2)1/2
(22)

corresponding to the scaling dimensiond = 1/2. When we integrate out the high-frequency
modes, using the rescaling(x, t) = λ(x ′, t ′), whereλ = (3/3′) is the ratio of cut-off
energies, we must rescale the operator:

cos(
√

2π8) = λ−1/2 cos(
√

2π8′). (23)

The coupling constant then scales asg⊥ → λ(2−1/2)g⊥ = g∗
⊥. The spin gap develops at

the point where strong coupling is reached. Settingg∗
⊥ = 1, λ = 3/1s , where3 = vs/a

is the upper cut-off, it follows that1s ∼ 3(g⊥)2/3. This gap is much greater than the
single-impurity Kondo temperatureTK ∼ 3(g⊥)2.

Although there is no single operator that can be directly related to the variableτ xj , there
are a collection of composite operators that are equal toτ xj , up to a phase factor. Consider
the following composite operators:

9+
j = −i(ψ†

j+1/2σσ2ψ
†
j−1/2) · Sj

9z
j = (−1)j

2
(ψ

†
j+1/2σψj−1/2 + ψ

†
j−1/2σψ

†
j+1/2) · Sj .

(24)

The first operator describes a composite singlet formed between a local moment and a
triplet pair on the neigbouring sites; the second describes a singlet between the local
moment and an electron delocalized on the two neighbouring sites. These operators are
the order parameters for odd-frequency singlet pairing and odd-frequency charge-density-
wave formation respectively. An expectation value〈9+

j 〉 would break gauge invariance, but
it does not induce any equal-time pairing.9 changes sign under an exchange of electron
spin or position coordinates. The induced pair correlation function

Fαβ(x − x ′, t − t ′) = 〈ψα(x, t)ψβ(x ′, t ′)〉 (25)

must exhibit the same symmetries, i.e.

Fαβ(x, t) = SFβα(x, t) = PFαβ(−x, t) P = S = −1. (26)

Since the parity for the combined operation of spin, space and time inversion isSPT = −1
andSP = 1, it follows thatT = −1, i.e. the pair correlations areodd in time:

Fαβ(x, t) = −Fαβ(x,−t). (27)

9z
j is obtained by taking the commutator of9+

j with the staggered isospin operator
T − = ∑

(−1)jψj↓ψj↑, 9z
j = [T −, 9+

j ]. Since the action ofT − is to convert a singlet
pairing field to a charge-density operator, it follows that an expectation value〈9z

j 〉 induces
an odd-frequency charge modulation.

The long-wavelength decompositions of the composite order parameters are

9+
j ∼ a(−1)j

[
R

†
↑(xj )L

†
↑(xj )S

−
j + R

†
↓(xj )L

†
↓(xj )S

+
j

]
+ · · ·

9z
j ∼ (a(−1)j /2)

{[
R

†
↑(xj )L↓(xj )− L

†
↑(xj )R↑(xj )

]
S−
j − HC

}
+ · · ·

(28)
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where the terms coupling toSz have been omitted. We may rewrite the operators appearing
in these expressions using the bosonized expressions for the Fermi fields (8):

(−1)jR+
↑ (xj )L

+
↑ (xj )S

−
j = i

2πa
(−1)j τ−

j exp[−i
√

2π2c]

(−1)jR+
↓ (xj )L

+
↓ (xj )S

+
j = i

2πa
(−1)j τ+

j exp[−i
√

2π2c]

(−1)jR+
↑ (xj )L↓(xj )S−

j = 1

2πa
(−1)j τ−

j exp[−i
√

2π8c]

(−1)jR+
↓ (xj )L↑(xj )S+

j = 1

2πa
(−1)j τ−

j exp[−i
√

2π8c]

whereτ±
j = exp[∓i

√
2π2s ]S

±
j . Using (20), we obtain

9+
j ∼ Z

π
e−i

√
2π2c(j)

9z
j ∼ Z

π
sin

√
2π8c(j).

The scaling dimensions of e−i
√

2π2c and e−i
√

2π8c are 1/(2Kc) andKc/2 respectively, so

〈9−(1)9+(2)〉 ∼ 1

[1x2 − v2
s 1t

2]1/(2Kc)

〈9z(1)9z(2)〉 ∼ 1

[1x2 − v2
s 1t

2]Kc/2
.

In other words, the development of long-range order in the variableτ xj leads to long-range
odd-frequency singlet and odd-frequency charge-density-wave correlations, where2c is the
phase of the pair correlations and8c is the phase of the charge-density-wave correlations.
Odd-frequency pair correlations will dominate the long-range correlations when the electron
interactions are repulsive andKc < 1.

Of course, since the Toulouse limit is anisotropic, a certain number of singlet pairing
correlations are induced; for example, the triplet order parameter

φtj = [ψ†
j+1/2↑ψ

†
j−1/2↓ − ψ

†
j−1/2↑ψ

†
j+1/2↓] ∼ 1

2π
〈cos

√
2π8s(j)〉 exp[−i

√
2π2c(j)] (29)

also develops long-range correlations. Since the scaling dimension of cos
√

2π8s is
d = 1

2, we expect|〈cos
√

2π8s(j)〉| ∼ (1s/t)
1/2 ∼ (J/t)1/3, so the amplitude of triplet

pair correlations is reduced relative to the odd-frequency singlet correlations by a factor
(J/t)2/3 � 1. These secondary triplet correlations are induced by the anisotropy, and will
vanish in the isotropic limit.

We thus see that in the absence of back-scattering, the main characteristic of the ZKE
model is the development of a spin gap and, in the case of repulsive electron–electron
interactions, the establishment of long-range odd-frequency singlet pair correlations in its
ground state.

4. Excitations

Let us discuss the excitation spectrum of the Hamiltonian (21) in more detail. We assume
that the spin field is locked, so that cos(

√
2π8s) can be replaced by its average. This yields

the following effective ‘magnetic’ field acting onτ x :

h = 3(g⊥)〈cos(
√

2π8s)〉 ∼ 3(g⊥/a0)
4/3 ∼ (1s)

2/3. (30)
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Thus the energy necessary to flip a single pseudospin is much smaller than the gap of
the propagating spin excitations. Exactly at the Toulouse limit pseudospin flips do not
propagate, but this changes when one considers finiteδgz = π − gz. We can integrate
approximately over8 putting

〈〈∇8s(q, ω)∇8s(−q,−ω)〉 ∼ χs
(q)2

q2 + ξ−2
(31)

whereχs ∼ 1/3 and ξ = a3/1s is the correlation length. This leads to the following
quantum Ising model Hamiltonian for the coupled pseudospins:

H =
∑
j

[J̃ (q)τ z(q)τ z(−q)] + h
∑
j

(−1)j τ xj (32)

where J̃ (q) = χ(q)[3δg]2. We can get a rough idea of the dispersion of the pseudospin
excitations using a Holstein–Primakov transformationτ+

q = b
†
q , which gives a spectrum

ωq = [h(J̃ (q)+ h)]1/2. (33)

We see that in a narrow range of wavevectors|q| < ξ−1 � a−1 where a is the lattice
constant,ωq ∼ h. Outside this region,ωq ∼ 1s

[
(δgz)2 + (1s/3)

2]1/2. There are thus two
gaps in the excitation spectrum:

(i) the spin gap1s = 3(g⊥)2/3; and
(ii) the pseudospin gaph = (1s)

2/3.

The lower band of spinless, dispersing excitations is most naturally interpreted as the residue
of the Majorana excitations present in individual two-channel Kondo impurities.

Let us now develop a heuristic picture of the temperature dependence of the ZKE
chain. At the highest possible temperatures, the individual Kondo spins are unbound, with
a spin susceptibilityχ0 ∼ 1/T . A ‘Zhang–Rice’ singlet [10] will begin to form around
each spin along the chain at a characteristic scaleT ∗. We may estimate this scale from a
high-temperature expansion. At high temperaturesT � h,

5 ≡ 〈〈cos(
√

2π8) cos(
√

2π8)〉〉ω,q→0 ∼ 1/T (34)

so the RPA expression for the pseudospin susceptibility

〈τ x(−ω,−q)τ x(ω, q)〉ω,q=0 = [(χ0)
−1 − (g⊥)25]−1 ∼ (T − constant× (g⊥)2/T )−1 (35)

acquires a singularity atT ∗ ∼ 3g⊥. This singularity will be smeared out by fluctuations,
but marks the development of Zhang–Rice singlets between the local moments and the
conduction chain. For smallg⊥, T ∗ is much smaller than the zero-temperature spin gap,
but much larger than the pseudospin gaph, h � T ∗ � 1s . There is thus a wide temperature
region,h(0) � T � T ∗, where the pseudospin band is non-degenerate, but the local spins
are strongly correlated with the conduction electrons to form Zhang–Rice singlets.

5. Reintroduction of back-scattering

We now return to discussing the back-scattering terms. We should like to be sure that our
results are indeed robust against the inclusion of small amounts of back-scattering. At half-
filling, we cannot really turn on the interactions between the electrons in the chain, for in
this case the model will develop a charge gap. But we need to turn on the electron–electron
interactions, because only then will the odd-frequency pair correlations become enhanced
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over the odd-frequency charge correlations. The key to this dilemma is to dope the model
away from half-filling. This introduces small amounts of back-scattering. Writing

n3
R,L = − 1

2πa
sin(

√
2π8s)e

∓i
√

2π8c

n±
R = − 1

2πa
e−i

√
2π(8c∓2s)

n±
L = − 1

2πa
e−i

√
2π(−8c∓2s)

(36)

the back-scattering part of the Hamiltonian may be written as

Hint =
∑
j

{
cos(

√
2π8c + 2kFRj )

[
gzbτ

x
j + g⊥

b (−1)j τ zj sin[
√

2π8s(j)]
]}
. (37)

Although this term is oscillatory in nature, we need to examine its scaling properties to
ensure that incommensurate phases do not form before odd-frequency pairing has time to
develop. The scaling dimension of the back-scattering term isKc/2 (the first term has a
larger scaling dimension(Kc+1)/2, and can be neglected), so the coupling constant rescales
to a renormalized value

g∗
b [ω] ∼ gb

(
ω

3

)Kc/2−2

. (38)

The forward scattering scales to strong coupling at energiesω comparable with the spin
gap1s . In order that odd-frequency correlations develop, we require that the renormalized
back-scattering coupling constant is small at this scale, i.e.

g∗
b [1s ] ∼ gb

(
1s

3

)Kc/2−2

∼ gb(g
⊥
f )

(Kc−4)/3 � 1 (39)

where we have used1s = 3g
2/3
f . But gb/gf = cos(kF a), so

coskF a �
(
J

t

)(1−Kc)/3
(40)

defines the region around half-filling where we expect odd-frequency pair correlations to
survive in the original model. For repulsive interactions 1/2< Kc < 1, so even in the limit
of infinitely strong repulsion,Kc = 1/2, this condition allows for a broad range of doping.
For these reasons, we expect odd-frequency pairing correlations to persist in a finite region
around half-filling.

6. Discussion: into three dimensions

We should like to end this paper by discussing how the results of the ZKE model might
extend to higher-dimensional models. To assemble the chains into a three-dimensional
structure one may introduce a direct electron hoppingt⊥ between the chains, as shown in
figure 2(a). We consider the case where this hopping is small:|t⊥| � 1s , so single-particle
hopping is virtual, but pair hopping is direct. There will be Josephson tunnelling of both
ordinary and composite (24) pairs, but with very different matrix elements. For ordinary
pairs the hopping matrix element is∼t2⊥, but for a composite pair in the absence ofdirect
spin exchange between the chains it is∼t4⊥. Taking into account equation (28) we get the
same effective interaction in the two cases:

Vint =
∑
i 6=j

Tij τ
x
i τ

x
j cos[

√
2π(2i −2j)]. (41)
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(b)

t

t

(a)

Figure 2. (a) Coupled ZKE chains. (b) The ‘Confederate Flag’ model: a symmetric
generalization of the ZKE model to two dimensions. Unlike the ‘Zhang–Rice’ singlet, where
each spin couples to a single Wannier state built up out of four orbitals, here the back-scattering
is absent, so each spin hasfour separate antiferromagnetic links to neighbouring electrons.

This form of interaction was postulated by Abrahamset al in their last paper about odd-
frequency pairing [5].

If the composite order parameter has the long-range correlations in the individual chains,
then the bare susceptibility for composite pairing in the system of uncoupled chains has the
following frequency dependence:

χ(0)(ω) ∼
∫

dx dt eiωt (x2 − v2
c t

2)−1/(2Kc) ∼ ω−2+(1/Kc). (42)

At a temperatureT , the composite pair susceptibility

χ(0)(T ) ∼ T −2+(1/Kc) (43)

is a divergent function of temperature, providingKc > 1
2, a condition satisfied except in

the extreme limit of repulsive interactions. For weak interchain coupling, the effective
pair susceptibilityχ(T ) = [(χ(0))−1 − 〈Tij 〉]−1 will diverge at a temperatureTc ∼ 〈Tij 〉η
with η = Kc/(2Kc − 1), giving rise to a a macroscopically phase-coherent odd-frequency
superconductor.

How can we study the odd-frequency pair condensate which forms? One proposal is
to examine the limit of strong intrachain repulsion, for in this limit the superconducting
order parameter has scaling dimension(1/Kc) ∼ 2, and so can be represented as the
fermion bilinear. In this case one can describe the low-energy behaviour by a 3D fermionic
Hamiltonian of spinless fermions:

Heff =
∑
j

H(j)+
∑
i,j

Tij (R
+
i L

+
i RjLj + HC)]

H(j) = vc

∫
dx [−i(R+

j ∂xRj − L+ ∂xL)− g0R
+
j RjL

+
j Lj ]

(44)
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where g0 ∼ 1
2 − Kc. This Hamiltonian, which describes a hopping of weakly coupled

preformed pairs, bears a remarkable resemblance to the Hamiltonian introduced by Anderson
and Chakravarthy [11] to describe the formation of the SC order parameter in cuprates.
The perturbative study of this Hamiltonian may provide insights into the properties of the
coupled-chain system.

Another approach which seems promising is that of using a slave-fermion representation
for the localized spins:

Sj = f
†
jα

(
σαβ

2

)
fjβ (45)

together with the constraintnf (j) = 1 This representation has a local SU(2) symmetry
[12]. By carrying out a Hubbard–Stratonovich decoupling of the Kondo interaction which
respects this gauge symmetry, one may transform the Kondo interaction into the form [13]

J
∑
λ=1,p

σλ · Sj −→
∑
λ=1,p

{
c̃
†
λVλ†(j)f̃j + f̃

†
j Vλ(j)c̃λ + 1

2J
Tr[Vλ†(j)Vλ(j)]

}
(46)

where

f̃j =
(
fj↑
f

†
j↓

)
c̃λ =

(
cλ↑
c
†
λ↓

)
(47)

are the Nambu spinors for the slave fermion and the conduction electrons.Vλ(j) =
iV λ(j) exp(iθλ(j)nλ(j) · τ ) is an SU(2) matrix representing the singlet bond formed
between the spin at sitej and its neighbour at siteλ. The quantityp is the number of
orbitals that hybridize with the local moment. For the ZKE model,p = 2. This Hamiltonian
has the SU(2) gauge symmetry:

Vλ(j) → gjVλ(j)
f̃j → gj f̃j

(48)

wheregj is an SU(2) operator. AlthoughVλ is not gauge invariant, if there is more than
one neighbour, thenVλ†Vλ′

is an SU(2) invariant which describes the phase coherence of
the Kondo singlet between the neighbouring atoms. For the ZKE model, this invariant is
directly related to the two composite order parameters:

Vj+1†Vj ∝
[
(−1)j9z

j 9−
j

9+
j (−1)(j+1)9z

j

]
. (49)

This relation expresses the basic result that phase coherence between Kondo singlets that
is distributed over more than one site gives rise to odd-frequency correlations. This type
of mean-field theory can be tested by checking that the mean-field theory with Gaussian
fluctuations is able to reproduce the salient features of the ZKE bosonization. Its virtue of
course lies in its ability to be generalized to a higher-dimensional model. One particularly
interesting model in this respect is the ‘Confederate Flag model’ shown in figure 2(b). This
model is reminiscent of the s–d models used for cuprate superconductors [10, 14], but the
Kondo scattering in each plaquette has been artificially stripped of the back-scattering terms
which simultaneously cause an electron to hop and flip a spin, to create an interaction

Hint = JSj · [σ1 + σ2 + σ3 + σ4] (50)

at each plaquette. It will be very interesting to see whether the removal of back-scattering
does indeed give rise to coherent odd-frequency singlet pairing.
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In this paper we have discussed recent non-perturbative results due to Zachar, Kivelson
and Emery [6] which suggest that odd-frequency pair correlations develop in a one-
dimensional Kondo lattice where back-scattering is suppressed. We have introduced a
simple lattice model where back-scattering is naturally suppressed, and argued that it is
odd-frequency singlet pairing that develops in this model. These correlations are robust
against doping around half-filling. We have argued that when ZKE chains are coupled, this
will lead to true long-range odd-frequency singlet pairing. Finally, we have proposed that the
SU(2) approach to the Kondo-lattice model offers a natural way to study this phenomenon
in higher-dimensional models.
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